Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.784
Filtrar
1.
Environ Sci Technol ; 58(15): 6744-6752, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38568876

RESUMO

During the growing season of 2021, 201 soil samples from conventionally and organically managed fields from 10 European countries and 8 cropping systems were taken, and 192 residues of synthetic pesticides were analyzed. Pesticide residues were found in 97% of the samples, and 88% of the samples contained mixtures of at least 2 substances. A maximum of 21 substances were found in conventionally managed fields, and a maximum of 12 were found in organically managed fields. The number and concentration of pesticide residues varied significantly between conventional and organic fields in 70 and 50% of the case study sites, respectively. Application records were available for a selected number of fields (n = 82), and these records were compared to the detected substances. Residues from 52% of the applied pesticides were detected in the soils. Only 21% of the pesticide residues detected in the soil samples were applied during the 2021 growing season. From the application data, predicted environmental concentrations of residues in soil were calculated and compared to the measured concentrations. These estimates turned out not to be accurate. The results of this study show that most European agricultural soils contain mixtures of pesticide residues and that current calculation methods may not reliably estimate their presence.


Assuntos
Resíduos de Praguicidas , Praguicidas , Poluentes do Solo , Resíduos de Praguicidas/análise , Resíduos de Praguicidas/química , Solo/química , Agricultura , Praguicidas/análise , Europa (Continente)
2.
Environ Toxicol Chem ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661474

RESUMO

Risk assessment for bees is mainly based on data for honey bees; however, risk assessment is intended to protect all bee species. This raises the question of whether data for honey bees are a good proxy for other bee species. This issue is not new and has resulted in several publications in which the sensitivity of bee species is compared based on the values of the 48-h median lethal dose (LD50) from acute test results. When this approach is used, observed differences in sensitivity may result both from differences in kinetics and from inherent differences in species sensitivity. In addition, the physiology of the bee, like its overall size, the size of the honey stomach (for acute oral tests), and the physical appearance (for acute contact tests) also influences the sensitivity of the bee. The recently introduced Toxicokinetic-Toxicodynamic (TKTD) model that was developed for the interpretation of honey bee tests (Bee General Uniform Threshold Model for Survival [BeeGUTS]) could integrate the results of acute oral tests, acute contact tests, and chronic tests within one consistent framework. We show that the BeeGUTS model can be calibrated and validated for other bee species and also that the honey bee is among the more sensitive bee species. In addition, we found that differences in sensitivity between species are smaller than previously published comparisons based on 48-h LD50 values. The time-dependency of the LD50 and the specifics of the bee physiology are the main causes of the wider variation found in the published literature. Environ Toxicol Chem 2024;00:1-11. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

3.
Talanta ; 275: 126065, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38663061

RESUMO

In practical applications, the rapid and efficient detection of universal organophosphorus pesticides (OPs) can assist inspectors in quickly identifying the presence of OPs in samples. However, this presents a challenge for most well-established methods, typically designed to detect only a specific type of organophosphorus molecule at a time. In this proof-of-concept study, we draw inspiration from the structural similarities among OPs to develop innovative peptide-based fluorescence probes for the first time, which could efficiently detect a broad range of OPs within a mere 3 min. Analysis of fluorescence curve fitting reveals a clear linear correlation between the fluorescent intensity of the peptide probes and the concentration of OPs. Additionally, the selectivity analysis indicates that these peptide fluorescent probes exhibit an excellent response to various OPs while maintaining sufficient selectivity for detecting other pesticide types. Accurate sample analysis has also highlighted the potential of these peptide probes as practical tools for the rapid detection of OPs in actual vegetable samples. In summary, this proof-of-concept study presents an innovative approach to designing and developing ultrafast, universally peptide-based OP probes. These custom-designed peptide probes may facilitate rapid sample screening and offer initial quantification for OPs, potentially saving valuable time and effort in practical OP detection.

4.
Environ Pollut ; : 124029, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663510

RESUMO

To ensure environmental and health safety, relevant pollutants such as pesticides must be screened thoroughly to set their permissible limit. Various approaches have been used to identify pesticides such as capillary electrophoresis, gas and liquid-liquid chromatography, high-performance liquid chromatography, and enzyme-linked immune-absorbent tests. However, these techniques have some drawbacks, including time-consuming difficult steps, expensive bulky equipment, expert personnel, and a lack of selectivity. Recent advances in the field of biosensing have introduced biosensors for the onsite detection of pesticides which offer several advantages including rapid, simple, selective, sensitive, low-cost operation, and on-site detection. With the advent of molecularly imprinted polymer which substituted the traditional biorecognition elements (BREs) such as enzymes and antibodies, biosensors' sensitivity, selectivity, and reproducibility enhanced many folds. Molecularly imprinted polymers (MIP) are artificial polymer molecules that resemble natural BREs. They are synthesized when functional monomers are polymerized in the presence of a target analyte. Owing to the advantages of MIP, in this paper, the development of MIP-based electrochemical biosensors for pesticide detection is reviewed critically. A brief introduction to pesticides and the use of MIPs-based electrochemical sensors for pesticide detection is presented along with pros and cons. Further, Internet of Things (IoT) integrated MIP-based nanosensors for pesticide detection and information distribution have been discussed. In the end, future perspectives and challenges while implementing MIP-based nanosensors for onsite pesticide recognition have eventually been highlighted.

5.
Heliyon ; 10(7): e29128, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38623208

RESUMO

Pesticides are chemical constituents used to prevent or control pests, including insects, rodents, fungi, weeds, and other unwanted organisms. Despite their advantages in crop production and disease management, the use of pesticides poses significant hazards to the environment and public health. Pesticide elements have now perpetually entered our atmosphere and subsequently contaminated water, food, and soil, leading to health threats ranging from acute to chronic toxicities. Pesticides can cause acute toxicity if a high dose is inhaled, ingested, or comes into contact with the skin or eyes, while prolonged or recurrent exposure to pesticides leads to chronic toxicity. Pesticides produce different types of toxicity, for instance, neurotoxicity, mutagenicity, carcinogenicity, teratogenicity, and endocrine disruption. The toxicity of a pesticide formulation may depend on the specific active ingredient and the presence of synergistic or inert compounds that can enhance or modify its toxicity. Safety concerns are the need of the hour to control contemporary pesticide-induced health hazards. The effectiveness and implementation of the current legislature in providing ample protection for human health and the environment are key concerns. This review explored a comprehensive summary of pesticides regarding their updated impacts on human health and advanced safety concerns with legislation. Implementing regulations, proper training, and education can help mitigate the negative impacts of pesticide use and promote safer and more sustainable agricultural practices.

6.
J Chromatogr A ; 1722: 464870, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604058

RESUMO

Birds are excellent bioindicators of environmental pollution, and blood provides information on contaminant exposure, although its analysis is challenging because of the low volumes that can be sampled. The objective of the present study was to optimize and validate a miniaturized and functional extraction and analytical method based on gas chromatography coupled to Orbitrap mass spectrometry (GCOrbitrap-MS) for the trace analysis of contaminants in avian blood. Studied compounds included 25 organochlorine pesticides (OCPs), 6 polychlorinated biphenyls (PCBs), 8 polybrominated diphenyl ethers (PBDEs) and 15 polycyclic aromatic hydrocarbons (PAHs). Four extraction and clean-up conditions were optimized and compared in terms of efficiency, accuracy, and uncertainty assessment. Extraction with hexane:dichloromethane and miniaturized Florisil pipette clean-up was the most adequate considering precision and accuracy, time, and costs, and was thereafter used to analyse 20 blood samples of a pelagic seabird, namely the Bermuda petrel (Pterodroma cahow). This species, endemic to the Northwest Atlantic, is among the most endangered seabirds of the region that in the '60 faced a decrease in the breeding success likely linked to a consistent exposure to dichloro-diphenyl-trichloroethane (DDT). Indeed, p,p'-DDE, the main DDT metabolite, was detected in all samples and ranged bewteen 1.13 and 6.87 ng/g wet weight. Other ubiquitous compounds were PCBs (ranging from 0.13 to 6.76 ng/g ww), hexachlorobenzene, and mirex, while PAHs were sporadically detected at low concentrations, and PBDEs were not present. Overall, the extraction method herein proposed allowed analysing very small blood volumes (∼ 100 µL), thus respecting ethical principles prioritising the application of less-invasive sampling protocols, fundamental when studying threatened avian species.


Assuntos
Aves , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos Clorados , Praguicidas , Animais , Cromatografia Gasosa-Espectrometria de Massas/métodos , Praguicidas/sangue , Hidrocarbonetos Clorados/sangue , Bifenilos Policlorados/sangue , Éteres Difenil Halogenados/sangue , Hidrocarbonetos Policíclicos Aromáticos/sangue , Hidrocarbonetos Policíclicos Aromáticos/análise , Espécies em Perigo de Extinção , Monitoramento Ambiental/métodos , Poluentes Ambientais/sangue , Poluentes Ambientais/análise
7.
J Chromatogr A ; 1722: 464892, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38608369

RESUMO

In this study, 3D-printing based on fused-deposition modeling (FDM) was employed as simple and cost-effective strategy to fabricate a novel format of rotating-disk sorptive devices. As proof-of-concept, twenty organochlorine and organophosphorus pesticides were determined in water samples through rotating-disk sorptive extraction (RDSE) using honeycomb-like 3D-printed disks followed by gas chromatography coupled to mass spectrometry (GC-MS). The devices that exhibited the best performance were comprised of polyamide + 15 % carbon fiber (PA + 15 % C) with the morphology being evaluated through X-ray microtomography. The optimized extraction conditions consisted of 120 min of extraction using 20 mL of sample at stirring speed of 1100 rpm. Additionally, liquid desorption using 800 µL of acetonitrile for 25 min at stirring speed of 1100 rpm provided the best response. Importantly, the methodology also exhibited high throughput since an extraction/desorption platform that permitted up to fifteen simultaneous extractions was employed. The method was validated, providing coefficients of determination higher than 0.9706 for all analytes; limits of detection (LODs) and limits of quantification (LOQs) ranged from 0.15 to 3.03 µg L-1 and from 0.5 to 10.0 µg L-1, respectively. Intraday precision ranged from 4.01 to 18.73 %, and interday precision varied from 4.83 to 20.00 %. Accuracy was examined through relative recoveries and ranged from 73.29 to 121.51 %. This method was successfully applied to analyze nine groundwater samples from monitoring wells of gas stations in São Paulo. Moreover, the greenness was assessed through AGREEprep metrics, and an overall score of 0.69 was obtained indicating that the method proposed can be considered sustainable.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos Clorados , Limite de Detecção , Compostos Organofosforados , Praguicidas , Impressão Tridimensional , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/isolamento & purificação , Compostos Organofosforados/análise , Compostos Organofosforados/isolamento & purificação , Praguicidas/análise , Praguicidas/isolamento & purificação , Hidrocarbonetos Clorados/análise , Hidrocarbonetos Clorados/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas/métodos , Adsorção
8.
Environ Res ; 252(Pt 2): 118958, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38640987

RESUMO

In modern agricultural practices, agrochemicals and pesticides play an important role in protecting the crops from pests and elevating agricultural productivity. This strategic utilization is essential to meet global food demand due to the relentless growth of the world's population. However, the indiscriminate application of these substances may result in environmental hazards and directly affect the soil microorganisms and crop production. Considering this, an in vitro study was carried out to evaluate the pesticides' effects i.e. lambda cyhalothrin (insecticide) and fosetyl aluminum (fungicide) at lower, recommended, and higher doses on growth behavior, enzymatic profile, total soluble protein production, and lipid peroxidation of bacterial specimens (Pseudomonas aeruginosa and Bacillus subtilis). The experimental findings demonstrated a concentration-dependent decrease in growth of both tested bacteria, when exposed to fosetyl aluminium concentrations exceeding the recommended dose. This decline was statistically significant (p < 0.000). However, lambda cyhalothrin at three times of recommended dose induces 10% increase in growth of Pseudomonas aeruginosa (P. aeruginosa) and 76.8% decrease in growth of Bacillus subtilis (B. subtilis) respectively as compared to control. These results showed the stimulatory effect of lambda cyhalothrin on P. aeruginosa and inhibitory effect on B. subtilis. Pesticides induced notable alterations in biomarker enzymatic assays and other parameters related to oxidative stress among bacterial strains, resulting in increased oxidative stress and membrane permeability. Generally, the maximum toxicity of both (P. aeruginosa and B. subtilis) was shown by fosetyl aluminium, at three times of recommended dose. Fosetyl aluminium induced morphological changes like cellular cracking, reduced viability, aberrant margins and more damage in both bacterial strains as compared to lambda cyhalothrin when observed under scanning electron microscope (SEM). Conclusively the, present study provide an insights into a mechanistic approach of pyrethroid insecticide and phosphonite fungicide induced cellular toxicity towards bacteria.

9.
Front Bioeng Biotechnol ; 12: 1379301, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646010

RESUMO

The increase in global population and industrial development has led to a significant release of organic and inorganic pollutants into water streams, threatening human health and ecosystems. Microalgae, encompassing eukaryotic protists and prokaryotic cyanobacteria, have emerged as a sustainable and cost-effective solution for removing these pollutants and mitigating carbon emissions. Various microalgae species, such as C. vulgaris, P. tricornutum, N. oceanica, A. platensis, and C. reinhardtii, have demonstrated their ability to eliminate heavy metals, salinity, plastics, and pesticides. Synthetic biology holds the potential to enhance microalgae-based technologies by broadening the scope of treatment targets and improving pollutant removal rates. This review provides an overview of the recent advances in the synthetic biology of microalgae, focusing on genetic engineering tools to facilitate the removal of inorganic (heavy metals and salinity) and organic (pesticides and plastics) compounds. The development of these tools is crucial for enhancing pollutant removal mechanisms through gene expression manipulation, DNA introduction into cells, and the generation of mutants with altered phenotypes. Additionally, the review discusses the principles of synthetic biology tools, emphasizing the significance of genetic engineering in targeting specific metabolic pathways and creating phenotypic changes. It also explores the use of precise engineering tools, such as CRISPR/Cas9 and TALENs, to adapt genetic engineering to various microalgae species. The review concludes that there is much potential for synthetic biology based approaches for pollutant removal using microalgae, but there is a need for expansion of the tools involved, including the development of universal cloning toolkits for the efficient and rapid assembly of mutants and transgenic expression strains, and the need for adaptation of genetic engineering tools to a wider range of microalgae species.

10.
Chemosphere ; 357: 142075, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38648985

RESUMO

Pesticides are considered one of the main sources of contamination of surface waters, especially in rural areas highly influenced by traditional agricultural practices. The objective of this work was to evaluate the impact caused by pesticides and their transformation products (TPs) related to olive groves in surface waters with strong agricultural pressure. 11 streams were monitored during four sampling campaigns over 2 years. A solid-phase extraction, followed by ultra-high-performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) analysis was used in the quantitative target approach, with more than 70 validated compounds. Target method was combined with a suspect screening strategy involving more than 500 pesticides and TPs, using ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS) to identify additional pesticides and TPs out of the scope of analysis. A total of 43 different compounds were detected with the target method. The herbicide MCPA was present in all samples and at the highest concentration (1260 ng L-1), followed by the fungicide carbendazim (1110 ng L-1), and the herbicide chlorotoluron (706 ng L-1). The suspect screening strategy revealed the presence of 7 compounds out of the target analysis (1 pesticide and 6 TPs). 6 analytes were confirmed with the analytical standards. Semi-quantification results revealed that TPs exhibited higher concentrations than their corresponding parent compounds, indicating higher persistency. Some small streams showed a comparable number of pesticides and concentrations to the most polluted large river. The determined pesticide and TPs concentrations represented an estimated environmental hazard in almost all sampling sites under study. This work underscores the importance of including pesticide TPs and small streams impacted by extensive agricultural activities in water quality monitoring programs.

11.
Insects ; 15(4)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38667416

RESUMO

Insecticide products are widely used in homes around the world, despite concerns about their adverse health effects. Variations in insecticide use levels can stem not only from differences in environmental conditions, but also from societal factors. This study investigates the impact of religiosity on insecticide use in Jewish households, hypothesizing that religious families might use more insecticides because insects are considered taboo in Judaism. Data from interviews with 70 families, examining their insecticide use, exposure to pests, aversion to cockroaches, and other predisposing factors, revealed that despite similar levels of pest exposure, religious families reported higher insecticide use and greater aversion to cockroaches. Multiple linear regression analysis identified religiosity as the primary predictor of insecticide use, followed by pest exposure levels. The elevated insecticide use among religious Jewish families may stem from several factors, with the Jewish categorization of insects as "impure animals" that should be strictly avoided likely playing a crucial role in promoting insecticide use. Understanding how attitudes toward insects influence insecticide use across different societies is crucial for health and environmental authorities to develop novel insecticide-reduction initiatives that will be tailored to the unique social characteristics of various communities.

12.
Toxics ; 12(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38668471

RESUMO

Pesticides must not pose unacceptable risks to human health, so risk assessments are conducted before products are authorised. Dermal exposure is often the main route of intake, so estimating realistic and trustworthy dermal absorption values is crucial for risk assessment. Although there are agreed test guidelines for in vitro dermal absorption studies, not every product is tested due to cost reasons. The present dataset consists of 945 individual in vitro experiments on the dermal absorption of human skin with 179 active substances of pesticides in 353 different mixtures, including concentrates and dilutions. The dataset was evaluated to identify the possible impacts of experimental conditions and physico-chemical properties on dermal absorption. The dataset was also analysed to assess the appropriateness of the pro rata correction for untested dilutions, and the set concentration cut-off to decide on the dilution status for choosing a default value on dermal absorption. The study found that the implementation of specific guidelines improved the harmonisation of study conduct, with support for approaches such as pro rata correction and default values. Further analysis of the specific co-formulants may identify influencing factors that may be more important than the experimental variables.

13.
Toxics ; 12(4)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38668493

RESUMO

Biomonitoring of human populations exposed to chemical substances that can act as potential mutagens or carcinogens, may enable the detection of damage and early disease prevention. In recent years, the comet assay has become an important tool for assessing DNA damage, both in environmental and occupational exposure contexts. To evidence the role of the comet assay in human biomonitoring, we have analysed original research studies of environmental or occupational exposure that used the comet assay in their assessments, following the PRISMA-ScR method (preferred reporting items for systematic reviews and meta-analyses extension for scoping reviews). Groups of chemicals were designated according to a broad classification, and the results obtained from over 300 original studies (n = 123 on air pollutants, n = 14 on anaesthetics, n = 18 on antineoplastic drugs, n = 57 on heavy metals, n = 59 on pesticides, and n = 49 on solvents) showed overall higher values of DNA strand breaks in the exposed subjects in comparison with the unexposed. In summary, our systematic scoping review strengthens the relevance of the use of the comet assay in assessing DNA damage in human biomonitoring studies.

14.
Anal Bioanal Chem ; 416(12): 3059-3071, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38558308

RESUMO

Pesticides can enter the atmosphere during spraying or after application, resulting in environmental or human exposure. The study describes the optimisation and validation of analytical methods for the determination of more than 300 pesticides in the particulate and gaseous phases of the air. Pesticides were sampled with high-volume air samplers on glass-fibre filters (GFFs) and glass columns filled with polyurethane foam (PUF) and XAD-2 resin. Comparing different extraction methods, a QuEChERS extraction with acetonitrile was selected for the GFFs. For the PUF/XAD-2 columns, a cold-column extraction with dichloromethane was used. Instrumental determination was performed using liquid chromatography/electrospray ionisation-time-of-flight mass spectrometry (LC/ESI-QTOF) and gas chromatography/electron impact ionisation-tandem mass spectrometry (GC/EI-MS/MS). Recovery experiments showed recovery rates between 70 and 120% for 263 compounds on the GFFs and 75 compounds on the PUF/XAD-2 columns. Semi-quantitative determination was performed for 39 compounds on the GFFs and 110 compounds on the PUF/XAD-2 columns. Finally, 27 compounds on the GFFs and 138 compounds on the PUF/XAD-2 columns could be determined only qualitatively. For the determination of the PUF/XAD-2 samples, signal suppression (LC) or signal enhancement (GC) due to matrix effects were determined. Method quantification limits of the optimised methods ranged from 30 to 240 pg/m3 for the target compounds on the GFFs, and from 8 to 60 pg/m3 on the PUF/XAD-2 columns. The applicability of the method was demonstrated by means of environmental air samples from an agricultural area in the Netherlands.

15.
Sci Total Environ ; 928: 172473, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615773

RESUMO

Nanotechnology has emerged as a transformative force in modern agriculture, offering innovative solutions to address challenges related to fungal plant diseases and overall agricultural productivity. Specifically, the antifungal activities of metal, metal oxide, bio-nanoparticles, and polymer nanoparticles were examined, highlighting their unique mechanisms of action against fungal pathogens. Nanoparticles can be used as carriers for fungicides, offering advantages in controlled release, targeted delivery, and reduced environmental toxicity. Nano-pesticides and nano-fertilizers can enhance nutrient uptake, plant health, and disease resistance were explored. The development of nanosensors, especially those utilizing quantum dots and plasmonic nanoparticles, promises early and accurate detection of fungal pathogens, a crucial step in timely disease management. However, concerns about their potential toxic effects on non-target organisms, environmental impacts, and regulatory hurdles underscore the importance of rigorous research and impact assessments. The review concludes by emphasizing the significant prospects of nanotechnology in reshaping the future of agriculture but advocates for a balanced approach that prioritizes safety, sustainability, and environmental stewardship.

16.
Sci Total Environ ; : 172521, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38641095

RESUMO

Agricultural practitioners, researchers and policymakers are increasingly advocating for integrated pest management (IPM) to reduce pesticide use while preserving crop productivity and profitability. Using selective pesticides, putatively designed to act on pests while minimising impacts on off-target organisms, is one such option - yet evidence of whether these chemicals control pests without adversely affecting natural enemies and other beneficial species (henceforth beneficials) remains scarce. At present, the selection of pesticides compatible with IPM often considers a single (or a limited number of) widely distributed beneficial species, without considering undesired effects on co-occurring beneficials. In this study, we conducted standardised laboratory bioassays to assess the acute toxicity effects of 20 chemicals on 15 beneficial species at multiple exposure timepoints, with the specific aims to: (1) identify common and diverging patterns in acute toxicity responses of tested beneficials; (2) determine if the effect of pesticides on beetles, wasps and mites is consistent across species within these groups; and (3) assess the impact of mortality assessment timepoints on International Organisation for Biological Control (IOBC) toxicity classifications. Our work demonstrates that in most cases, chemical toxicities cannot be generalised across a range of beneficial insects and mites providing biological control, a finding that was found even when comparing impacts among closely related species of beetles, wasps and mites. Additionally, we show that toxicity impacts increase with exposure length, pointing to limitations of IOBC protocols. This work challenges the notion that chemical toxicities can be adequately tested on a limited number of 'representative' species; instead, it highlights the need for careful consideration and testing on a range of regionally and seasonally relevant beneficial species.

17.
Crit Rev Toxicol ; : 1-20, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38626048

RESUMO

Consumers are confronted with conflicting information regarding the safety of specific foods. For example, the Environmental Working Group (EWG) publishes an annual consumer guide in which they rank the pesticide contamination of 46 popular fruits and vegetables, which includes designating the 12 with the greatest pesticide contamination as the "Dirty Dozen," to help consumers reduce exposures to toxic pesticides. However, consumer guides like EWG's only incorporate some hazard assessment principles and do not reflect a dietary risk assessment. Therefore, the purpose of this study is to apply risk assessment techniques to EWG's Dirty Dozen list using a uniform screening-level approach to estimate pesticide exposures for U.S. consumers and to characterize the associated chronic human health risks. The most commonly detected pesticide and its representative residue concentrations were identified for each produce type on the 2022 Dirty Dozen list using the USDA Pesticide Data Program database. Estimates of mean dietary consumption in the U.S. were used to calculate dietary exposure to each pesticide-produce combination for adults and children. Pesticide-specific U.S. EPA dietary health-based guidance values (HBGVs) were then used as benchmarks to evaluate the chronic human health risk of consuming each produce type. Overall, the estimated daily exposure for each pesticide-produce combination was below the corresponding HBGV for all exposure scenarios. The current analysis demonstrates that excessive produce-specific pesticide exposure is unexpected as the amount of produce that would need to be consumed on a chronic basis, even among children, far exceeds typical dietary intake. Future research is necessary to assess acute dietary exposure scenarios and to consider cumulative risk.

18.
Environ Sci Technol ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629313

RESUMO

Plant guttation is an important source of water/nutrients for many beneficial insects, while the presence of pesticides in guttation has been considered as a new exposure route for nontarget insects. This study aimed to elucidate how 15 diverse pesticides are translocated from growth media to guttation by maize plants through a hydroponic experiment. All pesticides were effectively translocated from the growth solution to maize guttation and reached a steady state within 5 days. The strong positive correlation (R2 = 0.43-0.84) between the concentrations of pesticides in guttation and in xylem sap demonstrated that xylem sap was a major source of pesticides in guttation. The relationship between the bioaccumulation of pesticides in guttation (BCFguttation) and the chemical Kow was split into two distinct patterns: for pesticides with log Kow > 3, we identified a good negative linear correlation between log BCFguttation and log Kow (R2 = 0.71); however, for pesticides with log Kow < 3, all data fall close to a horizontal line of BCFguttation ≅ 1, indicating that hydrophilic pesticides can easily pass through the plants from rhizosphere solution to leaf guttation and reach saturation status. Besides, after feeding with pesticide-contaminated guttation, the mortality of honeybees was significantly impacted, even at very low levels (e.g., ∑600 µg/L with a mortality of 93%). Our results provide essential information for predicting the contamination of plant guttation with pesticides and associated ecological risks.

19.
Sci Total Environ ; 928: 172217, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38583633

RESUMO

Martinique's mangroves, which cover 1.85 ha of the island (<0.1 % of the total area), are considerably vulnerable to local urban, agricultural, and industrial pollutants. Unlike for temperate ecosystems, there are limited indicators that can be used to assess the anthropogenic pressures on mangroves. This study investigated four stations on Martinique Island, with each being subject to varying anthropogenic pressures. An analysis of mangrove sediment cores approximately 18 cm in depth revealed two primary types of pressures on Martinique mangroves: (i) an enrichment in organic matter in the two stations within the highly urbanized bay of Fort-de-France and (ii) agricultural pressure observed in the four studied mangrove stations. This pressure was characterized by contamination, exceeding the regulatory thresholds, with dieldrin, total DDT, and metals (As, Cu and Ni) found in phytosanitary products. The mangroves of Martinique are subjected to varying degrees of anthropogenic pressure, but all are subjected to contamination by organochlorine pesticides. Mangroves within the bay of Fort-de-France experience notably higher pressures compared to those in the island's northern and southern regions. In these contexts, the microbial communities exhibited distinct responses. The microbial biomass and the abundance of bacteria and archaea were higher in the two less-impacted stations, while in the mangrove of Fort-de-France, various phyla typically associated with polluted environments were more prevalent. These differences in the microbiota composition led to the identification of 65 taxa, including Acanthopleuribacteraceae, Spirochaetaceae, and Pirellulaceae, that could potentially serve as indicators of an anthropogenic influence on the mangrove sediments of Martinique Island.

20.
Artigo em Inglês | MEDLINE | ID: mdl-38568307

RESUMO

The global occurrence of micropollutants in water bodies has raised concerns about potential negative effects on aquatic ecosystems and human health. EU regulations to mitigate such widespread pollution have already been implemented and are expected to become increasingly stringent in the next few years. Catalytic wet peroxide oxidation (CWPO) has proved to be a promising alternative for micropollutant removal from water, but most studies were performed in batch mode, often involving complex, expensive, and hardly recoverable catalysts, that are prone to deactivation. This work aims to demonstrate the feasibility of a fixed-bed reactor (FBR) packed with natural magnetite powder for the removal of a representative mixture of azole pesticides, recently listed in the EU Watch Lists. The performance of the system was evaluated by analyzing the impact of H2O2 dose (3.6-13.4 mg L-1), magnetite load (2-8 g), inlet flow rate (0.25-1 mL min-1), and initial micropollutant concentration (100-1000 µg L-1) over 300 h of continuous operation. Azole pesticide conversion values above 80% were achieved under selected operating conditions (WFe3O4 = 8 g, [H2O2]0 = 6.7 mg L-1, flow rate = 0.5 mL min-1, pH0 = 5, T = 25 °C). Notably, the catalytic system showed a high stability upon 500 h in operation, with limited iron leaching (< 0.1 mg L-1). As a proof of concept, the feasibility of the system was confirmed using a real wastewater treatment plant (WWTP) effluent spiked with the mixture of azole pesticides. These results represent a clear advance for the application of CWPO as a tertiary treatment in WWTPs and open the door for the scale-up of FBR packed with natural magnetite.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...